Prioritizing Disease Candidate Proteins in Cardiomyopathy-Specific Protein-Protein Interaction Networks Based on “Guilt by Association” Analysis
نویسندگان
چکیده
The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial). Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.
منابع مشابه
Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملPrediction of Coffee Effects in Rats with Healthy and NAFLD Conditions Based on Protein-Protein Interaction Network Analysis
Background and objectives: Non-alcoholic fatty liver disease (NAFLD) is a common liver condition. On the other hand, coffee consumption has shown promising for gastrointestinal diseases. Detection of the most valuable biomarkers of decaffeinated coffee treatment in healthy and non-alcoholic fatty liver disease conditions was the aim of the present study. Methods:</stro...
متن کاملVavien: An Algorithm for Prioritizing Candidate Disease Genes Based on Topological Similarity of Proteins in Interaction Networks
Genome-wide linkage and association studies have demonstrated promise in identifying genetic factors that influence health and disease. An important challenge is to narrow down the set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI) networks are useful in extracting the functional relationships between known disease and candidate genes, based on the p...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملInferring Gene-Phenotype Associations via Global Protein Complex Network Propagation
BACKGROUND Phenotypically similar diseases have been found to be caused by functionally related genes, suggesting a modular organization of the genetic landscape of human diseases that mirrors the modularity observed in biological interaction networks. Protein complexes, as molecular machines that integrate multiple gene products to perform biological functions, express the underlying modular o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013